欢迎来到亿配芯城! | 免费注册
你的位置:SONIX(松翰)半导体MCU单片机SOC芯片全系列-亿配芯城 > 话题标签 > 开关电源

开关电源 相关话题

TOPIC

作为一名电源研发工程师,自然经常与各种芯片打交道,可能有的工程师对芯片的内部并不是很了解,不少同学在应用新的芯片时直接翻到Datasheet的应用页面,按照推荐设计搭建外围完事。如此一来即使应用没有问题,却也忽略了更多的技术细节,对于自身的技术成长并没有积累到更好的经验。今天以一颗DC/DC降压电源芯片LM2675为例,尽量详细讲解下一颗芯片的内部设计原理和结构,IC行业的同学随便看看就好,欢迎指教! LM2675-5.0的典型应用电路 打开LM2675的DataSheet,首先看看框图 这个
反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我设计变压器的方法。 设计变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下
作为一名电源研发工程师,自然经常与各种芯片打交道,可能有的工程师对芯片的内部并不是很了解,不少同学在应用新的芯片时直接翻到 Datasheet 的应用页面,按照推荐设计搭建外围完事。如此一来即使应用没有问题,却也忽略了更多的技术细节,对于自身的技术成长并没有积累到更好的经验。今天以一颗 DC/DC 降压电源芯片 LM2675 为例,尽量详细讲解下一颗芯片的内部设计原理和结构,IC 行业的同学随便看看就好,欢迎指教! LM2675-5.0 的典型应用电路 这个图包含了电源芯片的内部全部单元模块,
随着我国工业的快速发展,开关电源逐渐地走上世界舞台,电源的体积也逐渐趋于模块化和小型化,电源的抗扰能力也越来越强。开关电源如何实现电压控制?内部结构是怎样的?下面带大家快速了解一下。 一、什么是开关电源 开关电源是开关稳压电源的简称,一般指输入为交流电压、输出为直流电压的AC-DC变换器。开关电源内部的功率开关管工作在高频开关状态,本身消耗的能量很低,电源效率可达75%~90%,比普通线性稳压电源(线性电源)提高一倍。 说到线性电源(如图1所示),它与开关电源的区别是什么呢?说的通俗一点就是线
用于电压转换的开关稳压器使用电感来临时存储能量。这些电感的尺寸通常非常大,必须在开关稳压器的印刷电路板(PCB)布局中为其安排位置。这项任务并不难,因为通过电感的电流可能会变化,但并非瞬间变化。变化只可能是连续的,通常相对缓慢。 开关稳压器在两个不同路径之间来回切换电流。这种切换非常快,具体切换速度取决于切换边缘的持续时间。开关电流流经的走线称为热回路或交流电流路径,其在一个开关状态下传导电流,在另一个开关状态下不传导电流。在PCB布局中,应使热回路面积小且路径短,以便最大限度地减小这些走线中
我们电子产品往往60%以上-可靠性方面的问题都出现在电子线路板的PCB设计上;工作及性能良好的PCB需要相关的理论及实践经验;我在产品的设计实践中经常碰到各种各样的问题;比如电子线路板不能通过系统EMS的测试标准,测试关键器件IC的功能引脚时出现高频噪声的问题,电路功能IC引脚检测到干扰噪声进行异常保护等等。通过不断的理论与实践结合;用实战检验我们的理论和实践的差异点!优良的设计跟长期的经验总结是密不可分的!! 中国电子元器件网分享一下开关电源与IC控制器PCB设计思路给电子设计爱好者参考。
开关电源设计本身是一项耗时耗力的工作,需要大量的设计变量进行权衡和迭代。下面电子元器件大型采购平台就介绍这款低成本、高性能、有助于工程师方便地设计开关电源的开关电源icU6513,可提供非常紧凑的输出电压调节(CV)和输出电流控制(CC)的原边反馈(PSR)控制器,是充电器应用的理想选择。 开关电源icU6513应用领域: 手机充电器 典型输出功率:10W 开关电源icU6513特点: l内置超高压功率BTJ l谷底开通、原边控制、系统效率高 l多模式原边控制方式 l优异的动态响应 l集成动态
在您的电源中很简单找到作为寄生元件的100fF电容器。您有必要明白,只有处理好它们才干取得契合EMI规范的电源。从开关节点到输入引线的少量寄生电容(100毫轻轻法拉)会让您无法满足电磁搅扰(EMI)需求。那100fF电容器是什么姿态的呢?在Digi-Key中,这种电容器不多。即使有,它们也会因寄生问题而供给广泛的容差。不过,在您的电源中很简单找到作为寄生元件的100fF电容器。只有处理好它们才干取得契合EMI规范的电源。图1是这些非方案中电容的一个实例。图中的右侧是一个笔直安装的FET,所带的
01 特种二极管 1.快速恢复二极管(FRD)-快速恢复二极管的反向恢复时间一般为几百纳秒,正向压降为0.6V~1V,正向电流为几安培至几千安培,反向峰值电压为几百伏特至几千伏特,可用作开关电源中的输出整流管和一次侧钳位保护电路的堵塞二极管。 ▲快速恢复二极管(FRD) 2.超快速恢复二极管(SRD)-超快速恢复二极管是在快速恢复二极管的基础上发展起来的,它的反向恢复电荷进一步减少,反向恢复时间可以减少到几十纳秒,可以作为开关电源适配器输出整流管,堵塞二极管,反馈电路中的整流管。 ▲超快恢复二
线性电源和开关电源的主要区别是: 线性电源的损耗大于开关电源; 线性电源的效率低于开关电源; 线性电源的外部干扰小于开关电源; 原因描述。 类似7805等芯片的电源是线性电源,其降压是通过多余能量的损失来实现的。 例如,7805的输入电压为10V,输出电压为5V,输出电流为0.2A。然后7805输入和输出之间的压降为5V。当电源工作时,总是有电流流过,假设电流也是0.2A,那么7805的损耗就是1W,效率大约是50%。 再次查看开关电源,如BUCK降压电路,其拓扑结构如下。 开关电源的工作原理